

Android

Android Application Development

- Ashwin

Agenda

➢ Android Platform Overview

➢ Installation

➢ Building Blocks

➢ Application Development

➢ Development Tools

➢ Source walk through

Introduction to Android

➢ Open software platform for mobile development

➢ A complete stack – OS, Middleware, Applications

➢ An Open Handset Alliance (OHA) project

➢ Powered by Linux operating system

➢ Fast application development in Java

➢ Open source under the Apache 2 license

Installation

System requirements

Download

http://ftp.cs.pu.edu.tw/pub/eclipse/eclipse/downloads/drops/R­3.7­201106131736/eclipse­SDK­3.7­
linux­gtk.tar.gz

http://dl.google.com/android/ADT­12.0.0.zip

http://dl.google.com/android/android­sdk_r12­linux_x86.tgz

Installing

Eclipse

Untar eclipse­SDK­3.7­linux­gtk.tar.gz .

Open Handset Alliance

➢ What is the Open Handset Alliance (OHA)? (1)

➢ It's a consortium of several companies

Opportunities

➢ 100s of millions of mobile phone users

➢ Very high growth, esp. in Asia

➢ think 1985 on the desktop (if you were born by then)

➢ no dominant 3rd party developers.... yet

➢ what will the killer app categories be?

➢ what does it mean to have any app + the internet in your
pocket?

➢ You can develop for it today!

Android Versions

➢ Cupcake

➢ Donut

➢ Eclair

➢ Froyo

➢ Gingerbread

➢ Honeycomb

➢ Ice Cream Sandwich

➢ Jelly Bean

Linux Kernel

➢ Works as a HAL

➢ Device drivers

➢ Memory management

➢ Process management

➢ Networking

Libraries

➢ C/C++ libraries

➢ Interface through Java

➢ Surface manager – Handling UI Windows

➢ 2D and 3D graphics

➢ Media codecs, SQLite, Browser engine

Android Run Time

➢ Dalvik VM

➢ Dex files
➢ Compact and efficient than class files
➢ Limited memory and battery power

➢ Core Libraries

➢ Java 5 Std edition
➢ Collections, I/O etc…

Application Framework

➢ API interface

➢ Activity manager – manages application life cycle.

➢ Package Manager

Applications

➢ Built in and user apps

➢ Can replace built in apps

Development Tools

➢ Eclipse

➢ Android SDK

➢ 3rd Party Add On's

Emulator

➢ QEMU-based ARM emulator

➢ Runs the same image as the device

➢ Limitations:
➢ No Camera support

Installation

 http://developer.android.com/sdk/installing/index.html

 http://onthefencedevelopment.com/blog/installing-eclipse-and-android-sdk-ubuntu-10041010

 http://sharepointkunskap.wordpress.com/2012/05/11/install-
android-sdk-and-eclipse-in-ubuntu-12-04/

 http://kittipatkampa.wordpress.com/2012/01/17/how-to-install-
eclipse-and-android-sdk-on-ubuntu-10-04-lts/

 http://www.wikihow.com/Install-Android-on-Ubuntu-Linux-
With-Eclipse-Ide

http://onthefencedevelopment.com/blog/installing-eclipse-and-android-sdk-ubuntu-10041010

Building Blocks

➢ Activity

➢ Service

➢ Intent and IntentFilters

➢ Content Providers

➢ Processes and Threads

Activity

➢ Typically correspond to one UI screen

➢ But, they can:

✔ Be faceless
✔ Be in a floating window
✔ Return a value

Activity Life Cycle

Activity Life Cycle

➢ OnCreate

➢ OnStart

➢ OnResume

➢ OnPause

➢ OnStop

➢ OnDestroy

Application Lifecycle

➢ Application run in their own processes
(VM, PID)

➢ Processes are started and stopped as
needed to run an application's
components

➢ Processes may be killed to reclaim
resources

Security

➢ Each application runs in its own process

➢ Process permissions are enforced at user
and group IDs assigned to processes

➢ Finer grained permissions are then
granted (revoked) per operations

UI Overview
➢ All user interface elements in an Android

app are built using View and ViewGroup
objects.

➢ A View is an object that draws something
on the screen that the user can interact
with.

➢ A ViewGroup is an object that holds other
View (and ViewGroup) objects in order to
define the layout of the interface.

Introducing Layouts

➢ Layout is the architecture for the user
interface in an Activity.It defines the layout
structure and holds all the elements that
appear to the user.

➢ You can declare your layout in two ways:
➢ Declare UI elements in XML
➢ Instantiate layout elements at

runtime

Layouts

➢ Linear Layout: A view group that aligns all
children in a single direction, vertically or
horizontally. You can specify the layout
direction with the android:orientation
attribute.

➢ Relative Layout:RelativeLayout is a view
group that displays child views in relative
positions. The position of each view can
be specified as relative to sibling
elements.

Layouts

➢ FrameLayout: The simplest of the Layout Managers, the
Frame Layout simply pins each child view to the top left
corner. Adding multiple children stacks each new child
on top of the previ-ous, with each new View obscuring
the last.

➢ GridLayout: A layout that places its children in a
rectangular grid.

➢ TableLayout: A layout that arranges its children into
rows and columns.

Layout Classes

➢ AbsoluteLayout In an Absolute Layout, each child View’s
position is defined in absolute coor-dinates. Using this
class, you can guarantee the exact layout of your
components, but at a price.

View

➢ This class represents the basic building
block for user interface components.

➢ Provides classes that expose basic user
interface classes that handle screen layout
and interaction with the user.

➢ View is the base class for widgets, which
are used to create interactive UI
components (buttons, text fields, etc.)

Input Control

➢ Button : A push-button that can be pressed, or clicked,
by the user to perform an action.

➢ Text field : An editable text field. You can use the
AutoCompleteTextView widget to create a text entry
widget that provides auto-complete suggestions

➢ Checkbox : An on/off switch that can be toggled by the
user. You should use checkboxes when presenting users
with a group of selectable options that are not mutually
exclusive.

➢ Radio button : Similar to checkboxes, except that only
one option can be selected in the group.

➢ Toggle button : An on/off button with a light indicator.

Input Control

➢ Spinner: A drop-down list that allows users to select one
value from a set.

➢ Pickers : A dialog for users to select a single value for a
set by using up/down buttons or via a swipe gesture.
Use a DatePickercode> widget to enter the values for the
date (month, day, year) or a TimePicker widget to enter
the values for a time (hour, minute, AM/PM), which will
be formatted automatically for the user's locale.

➢ ImageView

➢ ProgressBar

List View

➢ A view that shows items in a vertically
scrolling list.

➢ The items come from the ListAdapter
associated with this view.

Adapter

➢ An Adapter object acts as a bridge between an
AdapterView and the underlying data for that view.

➢ The Adapter provides access to the data items.

➢ AdapterView objects have two main responsibilities:

 * Filling the layout with data

 * Handling user selections

Grid View

➢ GridView is a ViewGroup that displays items in a two-
dimensional, scrollable grid.

➢ The grid items are automatically inserted to the layout
using a ListAdapter.

Applications have common structure

Views such as lists,
grids, text boxes,
buttons, and even an
embeddable web
browser

Content Providers
that enable
applications to
access data from
other applications
(such as Contacts),
or to share their own
data

An Activity Manager that
manages the life cycle of
applications and provides a
common navigation
backstack

A Notification Manager that
enables all apps to display
custom alerts in the status bar

A Resource Manager,
providing access to non-
code resources such as
localized strings, graphics,
and layout files

Applications have common structure

Broadcast
receivers can
trigger intents that
start an application

Data storage
provide data for
your apps, and can
be shared between
apps – database,
file, and shared
preferences (hash
map) used by
group of
applications

Activity is the presentation
layer of your app: there will
be one per screen, and the
Views provide the UI to the
activity

Intents specify what
specific action should be
performed

Services run in the
background and have no
UI for the user – they will
update data, and trigger
events

Compilation

Write app in Java

Compiled in Java

Transformed to Dalvik bytecode

Linux OS

Loaded into Dalvik VM

Dalvik VM

Run multiple VMs efficiently

Each app has its own VM

Minimal memory footprint

Hardware

➢ Turn on "USB Debugging" on your device.
➢ Settings > Applications > Development and

enable USB debugging

➢ Set up your system to detect your device.
e.
➢ Log in as root and create this file:

/etc/udev/rules.d/51-android.rules.
➢ SUBSYSTEM=="usb",

ATTR{idVendor}=="0bb4", MODE="0666",
GROUP="plugdev"

Intents

➢ Think of Intents as a verb and object; a
description of what you want done

➢ E.g. VIEW, CALL, PLAY etc..

➢ System matches Intent with Activity that
can best provide the service

➢ Activities and IntentReceivers describe
what Intents they can service

Intents

GMail

Contacts

Home

Blogger

Chat
Client component makes a
request for a specific action

“Pick photo”

Picasa

System picks best
component for that actionNew components can use
existing functionalityBlogger

Photo Gallery

Intent Receivers

➢ Components that respond to broadcast
‘Intents’

➢ Way to respond to external notification or
alarms

➢ Apps can invent and broadcast their own
Intent

Services

➢ Faceless components that run in the
background

➢ E.g. music player, network download etc…

Service Life Cycle

➢ Bound And UnBound Service
➢ A facility for the application to tell the

system about something it wants to be
doing in the background

➢ A bound service allows components (such
as activities) to bind to the service, send
requests, receive responses, and even
perform interprocess communication
(IPC).

Shared Preferences

➢ A class provides a general framework that
allows you to save and retrieve persistent
key-value pairs of primitive data types.

➢ Can save any primitive data: booleans,
floats, ints, longs, and strings. This data
will persist across user sessions (even if
your application is killed).

Content Providers

➢ Enables sharing of data across
applications

➢ E.g. address book, photo gallery

➢ Provides uniform APIs for:
➢ querying
➢ delete, update and insert.

➢ Content is represented by URI and MIME
type

Notifications

➢ Several types of situations may arise that
require you to notify the user about an
event that occurs in your application.
➢ When an event such as saving a file is

complete, a small message should appear to
confirm that the save was successful.

➢ If the application is performing work that the
user must wait for (such as loading a file), the
application should show a hovering progress
wheel or bar.

Location Manager

➢ This class provides access to
the system location services.

Hardware Oriented Features


Feature Description

Camera A class that enables your application to interact with the camera to snap a photo, acquire images for a preview
screen, and modify parameters used to govern how the camera operates.

Sensor Class representing a sensor. Use getSensorList(int) to get the list of available Sensors.

SensorManager A class that permits access to the sensors available within the Android platform.

SensorEventListener An interface used for receiving notifications from the SensorManager when sensor values have changed. An
application implements this interface to monitor one or more sensors available in the hardware.

SensorEvent This class represents a sensor event and holds information such as the sensor type (e.g., accelerometer,
orientation, etc.), the time-stamp, accuracy and of course the sensor's data.

MediaRecorder A class, used to record media samples, that can be useful for recording audio activity within a specific location
(such as a baby nursery). Audio clippings can also be analyzed for identification purposes in an access-control
or security application. For example, it could be helpful to open the door to your time-share with your voice,
rather than having to meet with the realtor to get a key.

GeomagneticField This class is used to estimated estimate magnetic field at a given point on Earth, and in particular, to compute
the magnetic declination from true north.

FaceDetector A class that permits basic recognition of a person's face as contained in a bitmap. Using this as a device lock
means no more passwords to remember — biometrics capability on a cell phone.

Getting Started

➢ http://developer.android.com/index.html
➢ Blog http://android-

developers.blogspot.com/ which has lots
of useful examples

➢ http://www.anddev.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

