
App1

• Create a Project with Eclipse
• Click New in the toolbar.
• In the window that appears, open the Android folder, select Android Application Project,

and click Next.
• Fill in the form that appears:

– Application Name is the app name that appears to users. For this project, use "My First
App."

– Project Name is the name of your project directory and the name visible in Eclipse.
– Package Name is the package namespace for your app (following the same rules as

packages in the Java programming language). Your package name must be unique across
all packages installed on the Android system. For this reason, it's generally best if you
use a name that begins with the reverse domain name of your organization or publisher
entity. For this project, you can use something like "com.example.myfirstapp." However,
you cannot publish your app on Google Play using the "com.example" namespace.

– Minimum Required SDK is the lowest version of Android that your app supports,
indicated using the API level. To support as many devices as possible, you should set this
to the lowest version available that allows your app to provide its core feature set. If any
feature of your app is possible only on newer versions of Android and it's not critical to
the app's core feature set, you can enable the feature only when running on the
versions that support it (as discussed in Supporting Different Platform Versions). Leave
this set to the default value for this project.

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/training/basics/supporting-devices/platforms.html

App1

App1

– Target SDK indicates the highest version of Android (also using the API level) with which
you have tested with your application.As new versions of Android become available, you
should test your app on the new version and update this value to match the latest API
level in order to take advantage of new platform features.

– Compile With is the platform version against which you will compile your app. By
default, this is set to the latest version of Android available in your SDK. (It should be
Android 4.1 or greater; if you don't have such a version available, you must install one
using the SDK Manager). You can still build your app to support older versions, but
setting the build target to the latest version allows you to enable new features and
optimize your app for a great user experience on the latest devices.

– Theme specifies the Android UI style to apply for your app. You can leave this alone.
• Click Next.
• On the next screen to configure the project, leave the default selections and click Next.
• The next screen can help you create a launcher icon for your app.You can customize an icon in

several ways and the tool generates an icon for all screen densities. Before you publish your
app, you should be sure your icon meets the specifications defined in the Iconography design
guide.

• Click Next.
• Now you can select an activity template from which to begin building your app.For this

project, select BlankActivity and click Next.
• Leave all the details for the activity in their default state and click Finish.

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/sdk/installing/adding-packages.html
http://developer.android.com/design/style/iconography.html

App1

Run on the Emulator
• Whether you're using Eclipse or the command line, to run your app on the emulator you need to first

create anAndroid Virtual Device (AVD). An AVD is a device configuration for the Android emulator that
allows you to model different devices.

• To create an AVD:

• Launch the Android Virtual Device Manager:

– In Eclipse, click Android Virtual Device Manager from the toolbar.

• In the Android Virtual Device Manager panel, click New.

http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/index.html

App1
• Fill in the details for the AVD. Give it a name, a

platform target, an SD card size, and a skin (HVGA
is default).

• Click Create AVD.
• Select the new AVD from the Android Virtual

Device Manager and click Start.
• After the emulator boots up, unlock the emulator

screen.
To run the app from Eclipse:
• click Run from the toolbar.
• In the Run as window that appears,

select Android Application and click OK.

App2
Create a Linear Layout
In this lesson, you'll create a layout in XML that includes a text field and a

button.
• Open the activity_main.xml file from the res/layout/ directory.
• The BlankActivity template you chose when you created this project

includes the activity_main.xml file with a RelativeLayout root view and
a TextView child view.

• First, delete the <TextView> element and change
the <RelativeLayout> element to <LinearLayout>. Then add
the android:orientation attribute and set it to "horizontal". The result
looks like this:

 <?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
</LinearLayout>

http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html

App2

• LinearLayout is a view group (a subclass of ViewGroup) that
lays out child views in either a vertical or horizontal
orientation, as specified by
the android:orientation attribute. Each child of
a LinearLayoutappears on the screen in the order in which
it appears in the XML.

• The other two
attributes, android:layout_width and android:layout_height
, are required for all views in order to specify their size.

• Because the LinearLayout is the root view in the layout, it
should fill the entire screen area that's available to the app
by setting the width and height to "match_parent". This
value declares that the view should expand its width or
height to match the width or height of the parent view.

http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/LinearLayout.html

App2

Add a Text Field (activity_main.xml)

• To create a user-editable text field, add
an <EditText> element inside the <LinearLayout>.

• Like every View object, you must define certain
XML attributes to specify the EditText object's
properties. Here’s how you should declare it
inside the <LinearLayout> element:

 <EditText android:id="@+id/edit_message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:hint="@string/edit_message" />

http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html

App2
Add String Resources
• When you need to add text in the user interface, you should always specify each

string as a resource. String resources allow you to manage all UI text in a single
location, which makes it easier to find and update text. Externalizing the strings
also allows you to localize your app to different languages by providing alternative
definitions for each string resource.

• By default, your Android project includes a string resource file
at res/values/strings.xml. Add a new string named "edit_message" and set the
value to "Enter a message." (You can delete the "hello_world" string.)

• While you’re in this file, also add a "Send" string for the button you’ll soon add,
called "button_send".

• The result for strings.xml looks like this:
<?xml version="1.0" encoding="utf-8"?>

<resources>
 <string name="app_name">My First App</string>
 <string name="edit_message">Enter a message</string>
 <string name="button_send">Send</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
</resources>

• In Eclipse, click Run from the toolbar.

App2
Respond to the Send Button
• To respond to the button's on-click event, open theactivity_main.xml layout file

and add theandroid:onClick attribute to the <Button> element:
• <Button

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_send"
 android:onClick="sendMessage" />

Start the Second Activity
• To start an activity, call startActivity() and pass it your Intent. The system receives

this call and starts an instance of the Activity specified by the Intent.
• With this new code, the complete sendMessage() method that's invoked by the

Send button now looks like this:
/** Called when the user clicks the Send button */

public void sendMessage(View view) {
 Intent intent = new Intent(this, DisplayMessageActivity.class);
 EditText editText = (EditText) findViewById(R.id.edit_message);
 String message = editText.getText().toString();
 intent.putExtra(EXTRA_MESSAGE, message);
 startActivity(intent);
}

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html

App2

Create the Second Activity
• To create a new activity using Eclipse:
• Click New in the toolbar.
• In the window that appears, open the Android folder and

select Android Activity. Click Next.
• Select BlankActivity and click Next.
• Fill in the activity details:

– Project: MyFirstApp
– Activity Name: DisplayMessageActivity
– Layout Name: activity_display_message
– Title: My Message
– Hierarchial Parent: com.example.myfirstapp.MainActivity
– Navigation Type: None

• Click Finish.

App2
Display the Message
• To show the message on the screen, create a TextView widget and set the text

using setText(). Then add theTextView as the root view of the activity’s layout by
passing it to setContentView().

• The complete onCreate() method for DisplayMessageActivity now looks like this:
• @Override

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get the message from the intent
 Intent intent = getIntent();
 String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

 // Create the text view
 TextView textView = new TextView(this);
 textView.setTextSize(40);
 textView.setText(message);

 // Set the text view as the activity layout
 setContentView(textView);
}

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

