

MATLAB and Octave

An Introduction

INTRODUCTION

 Octave and MATLAB are high-level
languages, primarily intended for numerical
computations.

 They provide a convenient command line
interface for solving linear and nonlinear
problems numerically.

 They can also be used for prototyping and
performing other numerical experiments.

Octave

 MATLAB is a proprietary product that
requires a license.

 Octave is freely redistributable software.
You may redistribute it and/or modify it
under the terms of the GNU General Public
License as published by the Free Software
Foundation.

 This document corresponds to Octave
version 2.0.13.

Starting Octave

 To start Octave type the shell command
octave. You see a message then a prompt:

octave:1>
 If you get into trouble, you can usually

interrupt octave by typing Ctrl-C to return
to the prompt.

 To exit Octave, type quit or exit at the
prompt.

Creating a matrix
 To create a new matrix and store it in a

variable, type the command:
octave:1>
A=[1,1,2;3,5,8;13,21,34]

 Octave will respond by printing the matrix
in neatly aligned columns.

 1 1 2

3 5 8

13 21 34

Controlling matrix output
 Ending a command with a semicolon tells

Octave to not print the result of a command.
octave:2> B=rand(3,2);

 will create a 3 row, 2 column matrix with
each element set to a random value between
zero and one.

 To display the value of any variable, simply
type the name of the variable.
octave:3> B

Matrix arithmetic

 Octave has a convenient operator notation
for performing matrix arithmetic. To
multiply the matrix a by a scalar, type:
octave:4> 2*A

 To multiply the two matrices A and B, type:
octave:5> A*B

 To form the matrix product type:
octave:6> A’*A

Solving linear equations

 To solve the set of linear equations Ax=b,
use the left division operator \ :
octave:7> A\b

 This is conceptually equivalent to inverting
the A matrix but avoids computing the
inverse of a matrix directly.

 If the coefficient matrix is singular, Octave
will print a warning message.

Graphical output

 To display an x-y plot, use the command:
octave:8> plot(x,sin(x))

 If you are using the X Window System,
Octave will automatically create a separate
window to display the plot.

 Octave uses gnuplot to display graphics,
and can display graphics on any terminal
that is supported by gnuplot.

Getting hardcopy
 To capture the output of the plot command

in a file rather than sending the output
directly to your terminal, you can use a set
of commands like this:
gset term postscript

gset output "foo.ps"

replot

 This will work for other types of output
devices as well.

DATA TYPES

 The standard built-in data types are
– real and complex scalars,

– real and complex matrices,
– ranges,
– character strings,

– a data structure type.

Numeric data objects
 All built-in numeric data is currently stored

as double precision numbers.
 On systems that use the IEEE floating point

format, values in the range of
approximately 1.80e+308 to 2.23e-308
can be stored, and the relative precision is
approximately 2.22e-16.

 The exact values are given by the variables
realmin,realmax and eps respectively.

Matrix objects

 Matrix objects can be of any size, and can
be dynamically reshaped and resized.

 It is easy to extract:
– rows, A(i,:) selects the ith row of the matrix,
– columns , A(:,j) selects the jth column of the

matrix, or
– sub-matrices, A([i1:i2],[j1:j2]) selects

rows i1 to i2 and columns j1 to j2.

Range objects

 A range expression is defined by the value
of the first element in the range, an optional
value for the increment between elements,
and a maximum value which the elements
of the range will not exceed.

 The base, increment, and limit are separated
by colons and may contain any arithmetic
expressions and function calls.

String objects

 A character string in Octave consists of a
sequence of characters enclosed in either
double-quote or single-quote marks.

 Internally, Octave currently stores strings as
matrices of characters.

 All the indexing operations that work for
matrix objects also work for strings.

Data structure objects

 Octave's data structure type can help you to
organize related objects of different types.

 The current implementation uses an
associative array with indices limited to
strings
x.a=1

x.b=[1,2;3,4]

x.c="string"

 creates a structure with three elements.

Object sizes

 A group of functions allow you to display
the size of a variable or expression.

 These functions are defined for all objects.
They return -1 when the operation doesn't
make sense.

 For example, the data structure type doesn't
have rows or columns, so the rows and
columns functions return -1 for structure
arguments.

Object size functions

 columns(A)
– Return the number of columns of A.

 rows(A)
– Return the number of rows of A.

 length(A)
– Return the number of rows of A or the number

of columns of A, whichever is larger.

More object size functions

 d=size(A)
– Return the number rows and columns of A, the

result is returned in the 2 element row vector d.
 [nr,nc]=size(A)

– The number of rows is assigned to nr and the
number of columns is assigned to nc.

 d=size(A,n)
– A second argument of either n=1 or n=2, size

will return only the row or column dimension.

Detecting object properties

 is_matrix(A)
– Return 1 if A is a matrix. Otherwise, return 0.

 is_vector(A)
– Return 1 if A is a vector. Otherwise, return 0.

 is_scalar(A)
– Return 1 if A is a scalar. Otherwise, return 0.

Detecting matrix properties

 is_square(A)
– If A is a square matrix, then return the

dimension of A. Otherwise, return 0.

 is_symmetric(A,tol)
– If A is symmetric within the tolerance

specified , then return the dimension of A.
Otherwise, return 0. If tol is omitted,
tol=eps

 isempty(A)
– If A is empty return 1. Otherwise, return 0.

Range definition

 The range 1:5
– defines the set of values [1,2,3,4,5].

 The range 1:2:5
– defines the set of values [1,3,5].

 The range 1:3:5
– defines the set of values [1,4].

 The range 5:-3:1
– defines the set of values [5,2].

More about ranges

 Note that the upper (or lower, if the
increment is negative) bound on the range is
not always included in the set of values.

 Ranges defined by floating point values can
produce surprising results because floating
point arithmetic is used.

 If it is important to include the endpoints of
a range and the number of elements is
known, use the linspace() function.

Special matrix object eye()
 eye(x)

– If invoked with a single scalar argument, eye
returns a square identity matrix with the
dimension specified.

 eye(n,m) or eye(size(A))
– If you supply two scalar arguments, eye takes

them to be the number of rows and columns.

 eye
– Calling eye with no arguments is equivalent to

calling it with an argument of 1.

Special matrix object ones()
 ones(x)

– If invoked with a single scalar argument, ones
returns a square matrix of 1’s with the
dimension specified.

 ones(n,m) or ones(size(A))
– If you supply two scalar arguments, ones takes

them to be the number of rows and columns.

 ones
– Calling ones with no arguments is equivalent to

calling it with an argument of 1.

Special matrix object zeros()
 zeros(x)

– If invoked with a single scalar argument, zeros
returns a square matrix of 0’s with the
dimension specified.

 zeros(n,m) or zeros(size(A))
– If you supply two scalar arguments, zeros takes

them to be the number of rows and columns.

 zeros
– Calling zeros with no arguments is equivalent

to calling it with an argument of 1.

Special matrix object rand()
 rand(x)

– If invoked with a single scalar argument, rand
returns a square matrix of random numbers
between 0 and 1 with the dimension specified.

 rand(n,m) or rand(size(A))
– If you supply two scalar arguments, rand takes

them to be the number of rows and columns.

 rand
– Calling rand with no arguments is equivalent to

calling it with an argument of 1.

Special matrix object randn()
 randn(x)

– With a single scalar argument, randn returns a
square matrix of Gaussian random numbers
between 0 and 1 with the dimension specified.

 randn(n,m) or randn(size(A))
– For two scalar arguments, randn takes them to

be the number of rows and columns.

 randn
– Calling rand with no arguments is equivalent to

calling it with an argument of 1.

Random number seeds
 Normally, rand and randn obtain their

initial seeds from the system clock,so that
the sequence of random numbers is not the
same each time you run Octave.

 To allow generation of identical sequences,
rand and randn allow the random
number seed to be specified.

rand(‘seed’,value) or

randn(‘seed’,value)

STRINGS

 A string constant consists of a sequence of
characters enclosed in either double-quote
or single-quote marks:

 Strings in Octave can be of any length.
 Since the single-quote mark is also used for

the transpose operator it is best to use
double-quote marks to denote strings.

Literals

 Some characters cannot be included literally
in a string constant. You represent them
instead with escape sequences, which are
character sequences beginning with a
backslash (\).

 Another use of backslash is to represent
unprintable characters such as newline \n or
tab \t and others.

String functions
 blanks(n) Return a string of n blanks.
 setstr(A) Convert a matrix to a string. Each

numeric element is converted to an ascii character.

 strcat(s1,...,sn)Return a string
containing all the arguments concatenated.

 str2mat(s1,..., sn)Return a valid
string matrix containing the strings s1, ..., sn as its
rows.

 deblank(s)Removes the trailing blanks from
the string s.

String comparison
 index(s1,s2)Return the position of the first

occurrence of the string s2 in s1, or 0 if not found.
Note: index does not work for arrays of strings.

 rindex(s1,s2)Return the position of the last
occurrence of the string s2 in s1, or 0 if not found.

Note: rindex does not work for arrays of strings.
 strcmp(s1,s2)Compares two strings, return 1

if they are the same, otherwise 0.
 isstr(s)Return 1 if s is a string, otherwise, 0.

Substring functions
 findstr(s1,s2)Return the vector of all

positions in the longer string where an occurrence
of the shorter substring starts.

 split(s1,s2)Divide s1 into substrings
separated by s2, returning a valid string array.

 strrep(s1,s2,s3)In string s1, replace all
occurrences of the substring s2 with substring s3.

 substr(s,n1,n2)Return the substring of s
starting at character n1 and is n2 characters long.

String conversions
 bin2dec(s)Return a decimal number corresponding

to the binary number represented as a string of 0s and 1s.

 dec2bin(n)Return a binary number as a string of 0s
and 1s corresponding the non-negative decimal number n.

 hex2dec(s)Return a decimal number corresponding
to the hexadecimal number stored in the string s.

 dec2hex(n)Return the hex number corresponding to
the non-negative decimal number n, as a string.

 str2num(s)Convert the string s to a number.
 num2str(n)Convert the number n to a string.

More string conversions
 toascii(s)Return ascii representation of s in

a matrix.

 tolower(s)Return a copy of the string s,
with each upper-case character replaced by the
corresponding lower-case one; non-alphabetic
characters are left unchanged.

 toupper(s)Return a copy of the string s,
with each lower-case character replaced by the
corresponding upper-case one; non-alphabetic
characters are left unchanged.

Testing characters

isalnum(s) isalpha(s) isascii(s) iscntrl(s)

isdigit(s) isgraph(s) islower(s) isprint(s)

ispunct(s) isspace(s) isupper(s) isxdigit(s)

 The above functions return 1 (true) or 0 (false) if
the tested character is in the set represented by the
function.

VARIABLES
 Variables let you give names to values and

refer to them later.
 The name of an Octave variable must be a

sequence of letters, digits and underscores,
but it may not begin with a digit.

 There is no limit on the number of
characters in a variable name.

 Case is significant in variable names. The
symbols a and A are distinct variables.

Built-in variables

 A number of variables have special built-in
meanings. For example, PWD holds the
current working directory, and pi names
the ratio of the circumference of a circle to
its diameter.

 Octave has a long list of all the predefined
variables. Some of these built-in symbols
are constants and may not be changed.

Status of variables

 clear options pattern
Delete the names matching the given patterns
from the symbol table.

 who options pattern
 whos options pattern

List currently defined symbols matching the given
patterns.

Options

The following are valid options for the clear
and who functions. They may be shortened
to one character but may not be combined.

 -a(ll) List all currently defined symbols.
 -b(uiltins) List built-in variables and functions.
 -f(unctions) List user-defined functions.
 -l(ong) Print a long listing of symbols
 -v(ariables) List user-defined variables.

EXPRESSIONS
 Expressions are the basic building block of

statements in Octave.
– An expression evaluates to a value, which you can

print, test, store in a variable, pass to a function, or
assign a new value to a variable with an assignment
operator.

– An expression alone can serve as a statement. Most
statements contain one or more expressions which
specify data to be operated on.

– Expressions include variables, array references,
constants, and function calls, as well as combinations
of these with various operators.

Index expressions

 An index expression allows you to
reference or extract selected elements of a
matrix or vector.

 Indices may be scalars, vectors, ranges, or
the special operator (:) ,which may be used
to select entire rows or columns.
– A(i,:)
– A(:,j)
– A(i1:i2,j1:j2)

Addition operators
 x+y

• Addition. If both operands are matrices, the number of rows
and columns must both agree.

 x.+y
• Element by element addition. This is equivalent to the +

operator.

 x-y
• Subtraction. If both operands are matrices, the number of rows

and columns of both must agree.

 x.-y
• Element by element subtraction. This is equivalent to the -

operator.

Multiplication operators

 x*y
• Matrix multiplication. The number of columns of x

must agree with the number of rows of y.

 x.*y
• Element by element multiplication. If both operands

are matrices, the number of rows and columns must
both agree.

Division operators
 x/y

• Right division. Equivalent to(inv(y')*x')'

 x./y
• Element by element right division. Each element of

x is divided by each corresponding element of y.

 x\y
• Left division. Equivalent to the inv(x)*y

 x.\y
• Element by element left division. Each element of y

is divided by each corresponding element of x.

Power operators
 x^y or x**y

– Power operator.
• x and y both scalar: returns x raised to the power y.

• x scalar, y is a square matrix : returns result using
eigenvalue expansion.

• x is a square matrix and y scalar: returns result by repeated
multiplication if y is an integer, else by eigenvalue expansion.

• x and y both matrices: returns an error.

 x.^y or x.**y
– Element by element power operator.

• If both operands are matrices, the number of rows and
columns must both agree.

Unary operators

 +x or +x.
• A unary plus operator has no effect on the operand.

 -x or -x.
• Negation or element by element negation.

 x'
• Complex conjugate transpose. For real arguments,

this is the same as the transpose operator. For
complex arguments, equivalent to conj(x.')

 x.'
• Element by element transpose.

Comparison operators
 Comparison operators compare numeric

values for relationships.
– All of comparison operators return a value of 1

if the comparison is true, or 0 if it is false.
– For matrix values, the comparison is on an

element-by-element basis.
•[1,2;3,4]==[1,3;2,4];ans=[1,0;0,1]

– For mixed scalar and matrix operands, the
scalar is compared to each element in turn.
•[1,2;3,4]==2;ans=[0,1;0,0]

Relational operators
 x<y True if x is less than y.
 x<=y True if x is less than or equal to y.

 x==y True if x is equal to y.
 x>=y True if x is greater than or equal to y.

 x>y True if x is greater than y.

 x!=y True if x is not equal to y.

 x~=y True if x is not equal to y.

 x<>y True if x is not equal to y.

Boolean expressions
 A boolean expression is a combination of

comparisons using the boolean operators
"or" (|),"and" (&), and "not" (!).
– Boolean expressions can be used wherever

comparison expressions can be used.
– If a matrix value used as the condition it is only

true if all of its elements are nonzero.
– Each element of an element-by-element

boolean expression has a numeric value (1 true,
0 false).

Boolean operators
 b1 & b2

• Elements of the result are true if both corresponding
elements of b1 and b2 are true.

 b1 | b2
• Elements of the result are true if either of the

corresponding elements of b1 or b2 is true.

 !b
 ~b

• Each element of the result is true if the
corresponding element of b is false.

Assignment expressions
 An assignment is an expression that stores a

new value into a variable.
•z=1

 Assignments can store string values also.
•thing="food"
•kind="good"
•message=["this ",thing," is ",kind]

 It is important to note that variables do not
have permanent types. The type of a
variable is whatever it happens to hold .

Assigning indexed expressions

 Assignment of a scalar to an indexed matrix
sets all of the elements that are referenced
by the indices to the scalar value.

•A(:,2)=5

 Assigning an empty matrix [] allows you
to delete rows or columns of matrices and
vectors.

•A(3,:)=[]
•A(:,1:2:5)=[]

Assigning multiple variables
 An assignment is an expression, so it has a

value. Thus, z=1 as an expression has the
value 1. One consequence of this is that you
can write multiple assignments together:

•x=y=z=0

 This is also true of assignments to lists, so
the following are valid expressions

•[a,b,c]=[u,s,v]=svd(A)
•[a,b,c,d]=[u,s,v]=svd(A)
•[a,b]=[u,s,v]=svd(A)

Increment operators

 Increment operators increase or decrease
the value of a variable by 1.
– The operators to increment and decrement a

variable are written as ++ and --.
– It may be used to increment a variable either

before (++x) or after (x++) taking its value.
– For matrix and vector arguments, the increment

and decrement operators work on each element
of the operand.

CONTROL STATEMENTS

 Control statements control the flow of
execution in programs.
– All the control statements start with special

keywords
– Each control statement has a corresponding end

keyword
– The list of statements contained between the

start keyword the corresponding end keyword
is called the body of a control statement.

Control structures

 Octave if statement
– The else and elseif clauses are optional. Any

number of elseif clauses may exist.
if (condition)

 then-body;

elseif (condition)

 elseif-body;

else

 else-body;

endif

More control structures
 Octave switch statement

– Any number of case labels are possible
switch expression

 case label

 command_list;

 case label

 command_list;

 ...

 otherwise

 command_list;

endswitch

More control structures
 Octave while statement

while (condition)

 body;

endwhile

 Octave for statement
for var = expression

 body;

endfor

More control statements

 The break statement
– jumps out of the innermost for or while loop

that encloses it. The break statement may
only be used within the body of a loop.

 The continue statement
– like break, is used only inside for or while

loops. It skips over the rest of the loop body,
causing the next cycle around the loop to begin
immediately.

FUNCTIONS
 A function is a name for a particular

calculation. For example, the function
sqrt computes the square root of a
number.

 A fixed set of functions are built-in, which
means they are available in every program.
The sqrt function is a built-in function.

 In addition, you can define your own
functions.

Calling functions
 A function call expression is a function

name and list of arguments in parentheses.
– The arguments are expressions which give the

data for function to operate on.
– When there is more than one argument, they are

separated by commas.
– If there are no arguments, you can omit the

parentheses.

Arguments for functions

 Most functions expects a particular number
of arguments.

•sqrt(x^2+y^2) # One argument
•ones(n,m) # Two arguments
•rand() # No arguments
•rand(“seed”,1)# Two arguments

 Some functions like rand take a variable
number of arguments and behave
differently depending on the number of
arguments.

Return values for functions

 Most functions return one value

y=sqrt(x)
 Functions in Octave (in common with perl)

may return multiple values.

[u,s,v]=svd(A)
 computes the singular value decomposition

of the matrix A and assigns the three result
matrices to u,s, and v.

Functions and script files

 Complicated programs can often be
simplified by defining functions.

 Functions can be defined directly on the
command line during interactive sessions.

 Alternatively, functions can be created as
external files, and can be called just like
built-in functions.

Defining functions

 In its simplest form, the definition of a
function named name looks like this:

function name

 body;

endfunction

 A valid function name any valid variable
name.

 The function body consists of expressions
and control statements.

Passing information to functions

 Normally, you will want to pass some
information to the functions you define.

function name(arg-list)

 body;

endfunction

 where arg-list is a comma-separated
list of arguments. When the function is
called, the argument names hold the values
given in the call.

Returning information

 In most cases, you will also want to get
some information back from the functions
you define.

function ret-var=name(arg-list)

 body;

endfunction

 The symbol ret-var is the name of the
variable, defined within the function, that
will hold the value to be returned.

Returning more information

 Functions may return more than one value.
function [ret-list]=name(arg-list)

 body;

endfunction

 where ret-list is a comma-separated
list of variable names that will hold the
values returned from the function. Note that
ret-list is a vector enclosed in square
brackets.

Script files
 A script file is a file containing (almost) any

sequence of commands.
• It is read and evaluated just as if you had typed each

command at the prompt.

• It provides a way to store a sequence of commands
that do not logically belong inside a function.

• Unlike a function file, a script file must not begin
with the keyword function..

• Variables named in a script file are not local
variables, but are in the same scope as the other
variables entered at the prompt.

Function subdirectories (1)

audio for playing and recording sounds.

control for design and simulation of
automatic control systems.

elfun elementary functions.

general miscellaneous matrix
manipulations.

image image processing tools.

io input-ouput functions.

Function subdirectories (2)

linear-algebra for linear algebra applications

miscellaneous functions that don't fit in any other
category

plot for MATLAB-like plotting.

polynomial for polynomial manipulations.

set for creating and manipulating sets of
unique values.

signal for signal processing applications.

Function subdirectories (3)

specfun special mainly inverse functions.

special-matrix to create special matrix forms.

statistics for statistical applications.

strings for string manipulations.

time for time keeping.

INPUT AND OUTPUT
 There are two distinct classes of input and

output functions.
– The first set are modelled after the functions

available in MATLAB.
– The second set are modelled after the standard

I/O library used by the C programming
language and offer more flexibility and control.

 When running interactively, Octave sends
output that is more than one screen long to a
paging program, such as less or more.

Terminal output

 Since Octave normally prints the value of
an expression as soon as it has been
evaluated, the simplest of all I/O functions
is a simple expression.

octave:1> pi

pi = 3.1416

 This works well as long as it is acceptable
to have the name of the variable (or the
default ans) printed along with the value.

More terminal output

 To print the value of a variable without
printing its name, use the function disp.

octave:1> disp (pi)

3.1416
• Note output from disp always ends with a newline.

 The format command offers some
control over the way Octave prints values
with disp and through the normal echoing
mechanism.

Terminal output format
 format options

– Control the format of the output produced by
disp and normal echoing. Valid options:

• short 5 sig figs 3.1416
• long 15 sig figs 3.14159265358979
• short e 5 sig figs 3.14e+00
• long e 15 sig figs 3.141592653590e+00
• short E 5 sig figs 3.14E+00

• long E 15 sig figs 3.141592653590E+00
• free Don’t align decimal points
• none

More format options
 format options

• bank two decimal places
• + + for nonzero, space for zero elements

• hex 8 byte IEEE real
• bit 8 byte IEEE real

Terminal input
 Octave has three functions that make it easy

to prompt users for input.
– input
– menu
– keyboard

 The input and menu functions are used for
managing an interactive dialog with a user.

 The keyboard function is used for simple
debugging.

Terminal input function
 input(prompt)

– Print a prompt and wait for user input.
• The string entered by the user is evaluated as an

expression, so it may be a literal constant, a variable
name, or any other valid expression.

 input(prompt,"s")
– Print a prompt and wait for user input.

• Return the string entered by the user directly,
without evaluating it first.

Terminal menu function
 menu(title,opt1,...)

– Print a title string followed by a series of
options. Each option will be printed along with
a number. The return value is the number of the
option selected by the user.
Are you there

1. Yes

2. No

>

Terminal keyboard function
 keyboard(prompt)

– This function is used for simple debugging.
When the keyboard function is executed,
Octave prints a prompt and waits for user input.
The default prompt is debug>

• The input strings are then evaluated and the results
are printed. This makes it possible to examine the
values of variables within a function, and to assign
new values to variables. The keyboard function
continues to prompt for input until the user types
quit or exit.

Terminal kbhit function
 kbhit ()

– Read a single keystroke from the keyboard.
 x=kbhit();

– will set x to the next character typed at the
keyboard as soon as it is typed.

Simple file I/O

 The save and load commands allow data
to be written to and read from disk files in
various formats.

 The format of files written by the save
command can be controlled using the built-
in variables default_save_format
(default value = “ascii”) and
save_precision (default value = 17).

File I/O save function
 save options file v1 v2 ...

– Save the named variables v1,v2,... in the
file file. All variables are saved by default.
•-ascii Save the data in text data format.
•-binary Save the data in binary data format.
•-float-binary Save the data in single

precision binary data format.
•-mat-binary Save the data in MATLAB

binary data format.
•-save-builtins Save the of built-in variables.

File I/O load function
 load options file v1 v2 ...

– Load the named variables from the file file.
Existing variables are overwritten using the
option -force. File type is auto-detected.
•-force Force variables currently in memory to

be overwritten by file variables with the same name.
•-ascii Assume file is text format.
•-binary Assume file is binary format.
•-mat-binary Assume file is MATLAB binary

format.

Graphical output

 Octave plotting functions use gnuplot to
handle the actual graphics.
– There are two low-level functions, gplot and
gsplot, that behave almost exactly like the
corresponding gnuplot functions plot and splot.

– A number of other higher level plotting
functions, patterned after the graphics functions
found in MATLAB version 3.5

Two dimensional plotting
 The MATLAB-style two-dimensional

plotting commands are:
– plot(x,y,fmt ...)
– axis(limits)
– hold on|off
– ishold
– replot
– clearplot
– closeplot

Three dimensional plotting

 The MATLAB-style three-dimensional
plotting commands are:
– mesh(x,y,z)
– meshdom(x,y)
– figure(n)

 There are a large number of additional
MATLAB plot formatting functions
supported by Octave.

Octave updates

 GNU Octave is freely redistributable
software. You may redistribute it
and/or modify it under the terms of
the GNU General Public License
(GPL) as published by the Free
Software Foundation.

 Octave was written by John W. Eaton and many others. Because
Octave is free software you are encouraged to help make Octave more
useful by writing and contributing additional functions for it, and by
reporting any problems you may have.
Visit the Octave web site: http://www.che.wisc.edu/octave/octave.html

	MATLAB and Octave
	INTRODUCTION
	Octave
	Starting Octave
	Creating a matrix
	Controlling matrix output
	Matrix arithmetic
	Solving linear equations
	Graphical output
	Getting hardcopy
	DATA TYPES
	Numeric data objects
	Matrix objects
	Range objects
	String objects
	Data structure objects
	Object sizes
	Object size functions
	More object size functions
	Detecting object properties
	Detecting matrix properties
	Range definition
	More about ranges
	Special matrix object eye()
	Special matrix object ones()
	Special matrix object zeros()
	Special matrix object rand()
	Special matrix object randn()
	Random number seeds
	STRINGS
	Literals
	String functions
	String comparison
	Substring functions
	String conversions
	More string conversions
	Testing characters
	VARIABLES
	Built-in variables
	Status of variables
	Options
	EXPRESSIONS
	Index expressions
	Addition operators
	Multiplication operators
	Division operators
	Power operators
	Unary operators
	Comparison operators
	Relational operators
	Boolean expressions
	Boolean operators
	Assignment expressions
	Assigning indexed expressions
	Assigning multiple variables
	Increment operators
	CONTROL STATEMENTS
	Control structures
	More control structures
	Slide 60
	More control statements
	FUNCTIONS
	Calling functions
	Arguments for functions
	Return values for functions
	Functions and script files
	Defining functions
	Passing information to functions
	Returning information
	Returning more information
	Script files
	Function subdirectories (1)
	Function subdirectories (2)
	Function subdirectories (3)
	INPUT AND OUTPUT
	Terminal output
	More terminal output
	Terminal output format
	More format options
	Terminal input
	Terminal input function
	Terminal menu function
	Terminal keyboard function
	Terminal kbhit function
	Simple file I/O
	File I/O save function
	File I/O load function
	Slide 88
	Two dimensional plotting
	Three dimensional plotting
	Octave updates

