Octave/Matlab Tutorial

Kai Arras
Social Robotics Lab

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts

Octave

- Files I/O
- Misc
- Octave and Matlab in practice
- librobotics

Matlab

Overview

Octave is the "open-source Matlab"
Octave is a great gnuplot wrapper

- www.octave.org
- www.mathworks.com

Octave and Matlab are both, high-level languages and mathematical programming environments for:

- Visualization
- Programming, algorithm development
- Numerical computation: linear algebra, optimization, control, statistics, signal and image processing, etc.

Overview

Matlab-Octave comparison:

- Matlab is more flexible/advanced/powerful/costly
- Octave is for free (GPL license)
- There are minor differences in syntax

This tutorial:

- This tutorial applies to Octave *and* Matlab unless stated otherwise!

Current versions (autumn 2009):

- Octave 3.2.3
- Matlab 7.6

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- Iibrobotics

Start, Quit, Getting Help

- To start Octave type the shell command octave, double-click Octave.app or whatever your OS needs.
You should see the prompt:
octave:1>
- If you get into trouble, you can interrupt Octave by typing Ctrl-C.
- To exit Octave, type quit or exit.

Start, Quit, Getting Help

- To get help, type help or doc
- To get help on a specific command (=built-in function), type help command
- Examples: help size, help plot, help figure, help inv, ...
- To get help on the help system, type help help
- Type q to exit help mode (alike man pages)

Start, Quit, Getting Help

- In the help text of Matlab functions, function names and variables are in capital letters. \rightarrow Don't get confused! The (case-sensitive) naming convention specifies lowercase letters for built-in commands. It is just a way to highlight text.
- Example: help round returns

ROUND Round towards nearest integer.
ROUND(X) rounds the elements of X to the nearest integers.

See also floor, ceil, fix.
[...]

- Octave texts are mixed, in lower- and

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- Iibrobotics

Variables and Data Types

- Matrices (real and complex)
- Strings (matrices of characters)
- Structures
\rightarrow Vectors? It's a matrix with one column/row
\rightarrow Scalars? It's a matrix of dimension 1xl
\rightarrow Integers? It's a double (you never have to worry)
\rightarrow Boolean? It's an integer (non-null=true, $0=$ false)

Almost everything is a matrix!

Variables and Data Types

Creating a Matrix

- Simply type:
octave:1> A = [8, 2, 1; 3, -1, 4; 7, 6, -5]
Octave will respond with a matrix in prettyprint:

A =

8	2	1
3	-1	4
7	6	-5

\rightarrow More on matrices, further down this tutorial.

Variables and Data Types

Creating a Character String

- Simply type:
octave:4> str = 'Hello World'
Opposed to Matlab, Octave can also deal with double quotes. For compatibility reasons, use single quotes.

Creating a Structure

- Type for instance: octave:5> data.id = 3; octave:6> data.timestamp = 1265.5983; octave:7> data.name = 'sensor 1 front';

Variables and Data Types

Creating a Array of Structures

- Oh, a new measurement arrives. Extend struct by:
octave:8> data(2).id = 4;
octave:9> data(2).timestamp = 1268.9613;
octave..> data(2).name = 'sensor 1 front';
Octave will respond with:
data =
\{
1x2 struct array containing the fields:
id
timestamp
name
$\}$

Variables and Data Types

Display Variables

- Simply type its name:
octave:1> a
a $=4$
Suppress Output
- Add a semicolon:
octave:2> a;
octave:3> sin(phi);
Applies also to function calls.

Variables and Data Types

- Variables have no permanent type. s = 3 followed by $s=$ 'octave' is fine
- Use who (or the more detailed whos) to list the currently defined variables. Example output:

Variables in the current scope:

Attr	Name
===== $====$	Size
A	$====$
a	3×3
ans	1×1
s	21×1
v	1×5
	1×21

Bytes	Class
$=====$	=====
72	double
8	double
168	double
5	char
24	double

Variables and Data Types

Numerical Precision
Variables are stored as double precision numbers in IEEE floating point format.

- realmin Smallest positive floating point number: 2.23e-308
- realmax Largest positive floating point number: 1.80e+308
- eps Relative precision: 2.22e-16

Variables and Data Types

Control Display of Float Variables

- format short Fixed point format with 5 digits
- format long

Fixed point format with 15 digits

- format short e Floating point format, 5 digits
- format long e Floating point format, 15 digits
- format short g Best of fixed or floating point with 5 digits (good choice)
- format long g Best of fixed or floating point with 15 digits

Variables and Data Types

Talking about Float Variables...

- ceil(x) Round to smallest integer not less than x
- floor(x) Round to largest integer not greater than x
- round(x) Round towards nearest integer
- fix(x) Round towards zero

If \mathbf{x} is a matrix, the functions are applied to each element of x.

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab iin practice
- Iibrobotics

Matrices

Creating a Matrix

- Simply type:

$$
\text { octave:1> A = }[8,2,1 ; 3,-1,4 ; 7,6,-5]
$$

- To delimit columns, use comma or space
- To delimit rows, use semicolon

The following expressions are equivalent:

$$
\left.\left.\begin{array}{l}
A=[821 ; 3-14 ; 76
\end{array}\right]-5\right]\left[\begin{array}{llll}
A & 2 & 1 ; 2,1 ; 3,-1,4 ; 7,6,-5
\end{array}\right.
$$

Matrices

Creating a Matrix

- Octave will respond with a matrix in prettyprint:

A =

$$
\begin{array}{rrr}
8 & 2 & 1 \\
3 & -1 & 4 \\
7 & 6 & -5
\end{array}
$$

- Alternative Example:
octave:2> phi = pi/3;
octave:3> $R=[\cos (p h i)$-sin(phi); sin(phi) cos(phi)]
R =

$$
\begin{array}{rr}
0.50000 & -0.86603 \\
0.86603 & 0.50000
\end{array}
$$

Matrices

Creating a Matrix from Matrices
octave:1> A = [1 1 1; 2 2 2]; $B=[33 ; 33] ;$

- Column-wise
octave:2> $C=\left[\begin{array}{ll}A & B\end{array}\right]$
C =

1	1	1	33
2	2	2	33

- Row-wise:
octave:3> $D=[A ;[44$ 44 44]]
D =

	1	1	1
2	2	2	
44	44	44	

Matrices

Indexing

Always "row before column"!

- aij = A(i,j) Get an element
- r = A(i,:) Get a row
- $c=A(:, j)$ Get a column
- B = A(i:k,j:l) Get a submatrix
- Useful indexing command end :
octave:1> data = [4 -1 35911 -2];
octave:2> v = data(3:end)
v =
$\begin{array}{llll}35 & 9 & 11 & -2\end{array}$

Matrices

Colon ':', two meanings:

- Wildcard to select entire matrix row or column A(3,:), B(:,5)
- Defines a range in expressions like indices $=1: 5$ Returns row vector 1,2,3,4,5
steps $=1: 3: 61$ Returns row vector 1,4,7,...,61
t = 0:0.01:1 Returns vector
$0,0.01 ; 0.02, . ., 1$
start increment stop
- Useful command to define ranges: linspace

Matrices

Assigning a Row/Column

- All referenced elements are set to the scalar value.
octave:1> A = [1 234 5; 2222 2; 33313 3];
octave:2> $A(3,:)=-3 ;$
Adding a Row/Column
- If the referenced row/colum doesn't exist, it's added.
octave:3> $A(4,:)=4$
A =

1	2	3	4	5
2	2	2	2	2
-3	-3	-3	-3	-3

Matrices

Deleting a Row/Column

- Assigning an empty matrix [] deletes the referenced rows or columns. Examples:

$$
\begin{aligned}
& \text { octave: } 4>A(2,:)=[] \\
& A= \\
& 1
\end{aligned} \begin{array}{lrrrr}
\\
A & 3 & 4 & 5 \\
-3 & -3 & -3 & -3 & -3 \\
4 & 4 & 4 & 4 & 4
\end{array}
$$

$$
\text { octave:4> } A(:, 1: 2: 5)=[]
$$

$$
A=
$$

2	4
2	2
-3	-3
4	4

Matrices

Get Size

- nr $=\operatorname{size}(A, 1) \quad$ Get number of rows of A
- nc = size(A,2) Get number of columns of A
- [nr nc] = size(A) Get both (remember order)
- 1 = length(A) Get whatever is bigger
- numel(A) Get number of elements in A
- isempty (A) Check if A is empty matrix []

Octave only:

- nr $=$ rows(A) Get number of rows of A
- nc = columns(A) Get number of columns of A

Matrices

Matrix Operations

- B = 3*A Multiply by scalar
- C = A*B + X - D Add and multiply
- B = A' Transpose A
- B = inv(A) Invert A
" $\mathrm{s}=\mathrm{v}^{\text {'*}} \mathrm{Q}^{*} \mathrm{v}$ Mix vectors and matrices
- $d=\operatorname{det}(A)$ Determinant of A
- [v lambda] = eig(A) Eigenvalue decomposition
- [U S V] = svd(A) Sing. value decomposition

Matrices

Vector Operations
With x being a column vector

- $s=x^{\prime *} x$ Inner product, result is a scalar
- $X=x^{*} x^{\prime}$ Outer product, result is a matrix
- $\mathrm{e}=\mathrm{x}^{*} \mathrm{x}$ Gives an error

Element-Wise Operations (for vectors/matrices)

- s = x.+x Element-wise addition
- p = x.*x Element-wise multiplication
- q = x./x Element-wise division
- e = x.^3 Element-wise power operator

Matrices

Useful Vector Functions

- sum(v) Compute sum of elements of v
- cumsum(v) Compute cumulative sum of elements of v
- prod(v) Compute product of elements of v
- cumprod(v) Compute cumulative product of elements of v
- diff(v) Compute difference of subsequent elements [v(2)-v(1) v(3)-v(2) ...]
- mean(v) Mean value of elements in v
- std(v) Standard deviation of elements

Matrices

Useful Vector Functions
$\min (v) \quad$ Return smallest element in v
$\max (v) \quad$ Return largest element in v
sort(v,'ascend') Sort in ascending order
sort(v,'descend')
Sort in descending order
find(v) Return vector of indices of all non- zero elements in v. Great in combination with vectorized conditions. Example:

Matrices

Special Matrices

- $A=\operatorname{zeros}(m, n) \quad$ Zero matrix of size $m \times n$
- B = ones(m,n) Matrix of size $m \times n$ with all 1's
- I = eye(n) Identity matrix of size n
- D = diag([a bc]) Diagonal matrix of size 3
x 3
with a, b, c in the main diagonal
Just for fun
- M = magic(n) Magic square matrix of size $\mathrm{n} \times \mathrm{n}$. (All rows and columns sum up to the same number)

Matrices

Random Matrices and Vectors

- $R=\operatorname{rand}(m, n) \quad$ Matrix with $m \times n$ uniformly distributed random numbers from interval [0..1]
- $\mathrm{N}=\operatorname{randn}(\mathrm{m}, \mathrm{n}) \quad$ Row vector with $\mathbf{m} \times \mathrm{n}$ normally
distributed random numbers
with zero mean, unit variance
- v = randperm(n) Row vector with a random permutation of the numbers

1 to n

Matrices

Multi-Dimensional Matrices
Matrices can have more than two dimensions. Create a 3-dimensional matrix by typing, e.g., octave:1> A = ones(2,5,2)

Octave will respond by
A =
ans(:,:,1) =

Matrices

Multi-Dimensional Matrices

- All operations to create, index, add, assign, delete and get size apply in the same fashion

Examples:

- [m n l] = size(A)
- $A=\operatorname{rand}(m, n, l)$
- m $=\min (\min (\min (A)))$
- aijk = A(i,j,k)
- $A(:,: 5)=-3$

Matrices

-reshape (A, m, n) Change size of matrix A to have
"circshift(A, [m n]) Shift elements of A m
"shiftdim(A, n) Shift the dimension of A by \mathbf{n}.

Matrices

M

Strings

Most Often Used Commands

- strcat Concatenate strings
- int2str Convert integer to a string
- num2str Convert numbers to a string
- sprintf Write formatted data to a string. Same as C/C++ fprintf for strings.
- Example
s = strcat('At step ',int2str(k),', p = ',num2str(p,4))
Given that strings are matrices of chars, this is also
s = ['At step ' int2str(k) ', p = ' num2str(p,4)]
Octave responds with
$\mathrm{s}=$ At step 56, $\mathrm{p}=0.142$

Strings

Octave/Matlab has virtually all common string and parsing functions.
-You are encouraged to browse through the list of commands or simply type help command :
strcmp, strncmp, strmatch, char, ischar, findstr, strfind, str2double, str2num, num2str, strvcat, strtrim, strtok, upper, lower,
and many more...

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- Iibrobotics

Plotting

Plotting in 2D

- plot(x, cos(x)) Display x, y-plot

Creates automatically a figure window. Octave uses gnuplot to handle graphics.

- figure(n) Create figure window 'n'

If the figure window already exists, brings it into the foreground (= makes it the current figure)

- figure Create new figure window with identifier incremented by 1.

Plotting

Several Plots

- Series of x, y-patterns: $\operatorname{plot}(x 1, y 1, x 2, y 2, \ldots)$ e.g. $\operatorname{plot}(x, \cos (x), x, \sin (x), x, x . \wedge 2)$
- Add legend to plot: command legend legend('cos(x)','sin(x)','x^2')
- Alternatively, hold on does the same job: octave:1> hold on; plot(x, $\cos (x))$; octave:2> plot(x, $\sin (x))$; octave:3> plot(x,x.^2);

Plotting

Frequent Commands

- clf Clear figure hold on Hold axes. Don't replace plot with new plot, superimpose plots
grid on Add grid lines
grid off Remove grid lines
title('Exp1') Set title of figure window
xlabel('time') Set label of x-axis
ylabel('prob') Set label of y-axis
subplot Put several plot axes into figure

Plotting

Controlling Axes

- axis equal Set equal scales for $x-/ y$-axes
- axis square Force a square aspect ratio
- axis tight Set axes to the limits of the data
- a = axis Return current axis limits
[xmin xmax ymin ymax]
- axis([llll $\left.\begin{array}{lll}-1 & 1 & 2\end{array} 5\right]$ Set axis limits (freeze axes)
- axis off Turn off tic marks
- box on
- box off Removes box

Plotting

Choosing Symbols and Colors

- In plot(x, cos(x),'r+') the format expression ' $\mathrm{r}+$ ' means red cross.
- There are a number of line styles and colors, see help plot.

Example:

$$
\begin{aligned}
& \text { octave:1> x = linspace(0,2*pi, 100); } \\
& \text { octave:2> plot(x, cos(x),'r+',x,sin(x),'bx'); } \\
& \text { produces this plot: }
\end{aligned}
$$

Plotting

Plotting

Adj
usti
ng
the
axe

Plotting

*) Title and x label wrongly cut off. This seems to be a OctaveAquaTerm on Mac problem. Should work in general.
plot(x, cos(x), 'r+', $\left.x, \sin (x), \quad b x^{\prime}\right)$;

Plotting

Uhm..., don't like it. New try:

oct
 ave
 : 1>
 clf
 ;

Co
ntr olli
ng
Col
or
an
d

Plotting

plot($x, \cos (x), ' r+', x, \sin (x), '-x^{\prime}, ' \operatorname{Color} ',[1$. 4 . 8],'MarkerSize', 2)

Plotting

Yepp, I like it... Get hardcopy!
Exporting Figures

- print -deps myPicBW.eps Export B/W .eps file
- print -depsc myPic.eps Export color .eps file
- print -djpeg -r80 myPic.jpg Export .jpg in 80 ppi
- print -dpng -r100 myPic.png Export.png in 100 ppi

See help print for more devices including specialized ones for Latex.

- print can also be called as a function. Then, it takes arguments and options as a comma-separa-ted list. E.g.: print('-dpng','r100', 'mvPic.pnq'):

Plotting

This tutorial cannot cover the huge variety of graphics commands in Octave/Matlab.
-You are encouraged to browse through the list of commands or simply type help command :
hist, bar, pie, area, fill, contour, quiver, scatter, compass, rose, semilogx, loglog, stem, stairs, image, imagesc
and many more...

Plotting

Plotting in 3D

- plot3Plot lines and points in 3d
- mesh 3D mesh surface plot
- surf 3D colored surface plot

Most 2d plot commands have a 3D sibling. Check out, for example,
bar3, pie3, fill3, contour3, quiver3, scatter3, stem3

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrices
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- Iibrobotics

Programming

Programming in Octave/Matlab is Super Easy. However, keep the following facts in mind:
-Indices start with 1 !!!
octave:1> v = 1:10
octave:2> v(0)
error: subscript indices must be either positive integers or logicals.
-Octave/Matlab is case-sensitive.
Text Editors
-Use an editor with m-file syntax highlighting/coloring.

Programming

Control Structures

- if Statement
if condition, then-body;
elseif condition, elseif-body;
else
else-body;
end
The else and elseif clauses are optional. Any number of elseif clauses may exist.

Programming

Control Structures

- switch Statement
switch expression
case label
command-list;
case label
command-list;
otherwise command-list; end

Any number of case labels are possible.

Programming

C

Programming

Interrupting and Continuing Loops

- break

Jumps out of the innermost for or while loop that encloses it.

- continue

Used only inside for or while loops. It skips over the rest of the loop body, causing the next cycle to begin. Use with care.

Programming

Programming

Comparison Operators

- All of comparison operators return a value of 1 if the comparison is true, or 0 if it is false. Examples: i == 6, cond1 = (d > theta)
- For the matrix-to-matrix case, the comparison is made on an element-by-element basis. Example:
[1 2; 3 4] == [1 3; 2 4] returns [1 0; 0 1]
- For the matrix-to-scalar case, the scalar is compared to each element in turn. Example:
[1 2; 3 4] == 2 returns [0 1; 0 0]

Programming

C

Programming

Relational Operators

- $x<y$ True if x is less than y
" $x<=y \quad$ True if x is less than or equal to y
- $x==y \quad$ True if x is equal to y
- $x>=y \quad$ True if x is greater than or equal to y
- $x>y$ True if x is greater than y
- x ~= $y \quad$ True if x is not equal to y
- x != $y \quad$ True if \mathbf{x} is not equal to \mathbf{y} (Octave only)

Programming

Boolean Expressions

- B1 \& B2 Element-wise logical and
- B1 | B2 Element-wise logical or
- ~B Element-wise logical not
- ! B Element-wise logical not (Octave only)

Short-circuit operations: evaluate expression only as long as needed (more efficient).

- B1 \&\& B2 Short-circuit logical and
- B1 || B2 Short-circuit logical or

Programming

Recommended Naming Conventions

- Underscore-separated or lowercase notation for functions
Examples: intersect_line_circle.m, drawrobot.m, calcprobability.m
- UpperCamelCase for scripts Examples: LocalizeRobot.m, MatchScan.m
- Note: Matlab/Octave commands are all in lowercase notation (no underscores or dashes)
Examples: continue, int2str, isnumeric

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrix arithmetic
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- Iibrobotics

Functions and Scripts

Functions

Complicated Octave/Matlab programs can often be simplified by defining functions. Functions are typically defined in external files, and can be called just like built-in functions.
-In its simplest form, the definition of a function named name looks like this:
function name
body
end
-Get used to the principle to define one function per file (text files called \mathbf{m}-file or. m-file)

Functions and Scripts

Passing Parameters to/from Functions

-Simply write

$$
\begin{aligned}
& \text { function [ret-var] = name(arg-list) } \\
& \text { body } \\
& \text { end }
\end{aligned}
$$

-arg-list is a comma-separated list of input arguments arg1, arg2, ..., argn
-ret-var is a comma-separated list of output arguments. Note that ret-var is a vector enclosed in square brackets [arg1, arg2, ..., argm].

Functions and Scripts

Example Functions:

```
    function [mu sigma] = calcmoments(data)
    mu = mean(data);
    sigma \(=\) std(data);
end
```

 function [haspeaks i] = findfirstpeak(data,
 thresh)

```
        indices = find(data > thresh);
        if isempty(indices),
        haspeaks = 0; i = [];
    else
        haspeaks = 1; i = indices(1);
        end
end
```


Functions and Scripts

Local Variables, Variable Number of Arguments

- Of course, all variables defined within the body of the function are local variables.
- varargin Collects all input argument in a cell array. Get them with varargin $\{\mathrm{i}\}$
- varargout Collects all output argument in a cell array. Get them with varargout $\{\mathrm{i}\}$
- nargin Get the number of input args.
- nargout Get the number of output args.

See help varargin, help varargout for details.

Functions and Scripts

Functions and their m-File
-When putting a function into its m-file, the name of that file must be the same as the function name plus the .m extension. Examples: calcmoments.m, findfirstpeak.m
-To call a function, type its name without the .m extension. Example:
[bool i] = findfirstpeak(myreadings, 0.3);
-Comments in Octave/Matlab start with \% . Make use of them!

Functions and Scripts

Scripts

Functions and Scripts

Document your Function/Script
You can add a help text to your own functions or
scripts that appears upon help command.
The first block of comment lines int the beginning of
an m-file is
defined to be help
text. Exampletelp text

Functions and Scripts

Setting Paths

- path Print search path list
- addpath('dir') Prepend the specified directory to the path list
- rmpath('dir') Remove the specified directory from the path list
- savepath Save the current path list

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrix arithmetic
- Plotting
- Programming
- Functions and scripts

Files I/O

- Misc
- Octave and Matlab in practice
- librobotics

Files I/O

Save Variables
After a complex of lengthy computation, it is recom-mended to save variables on the disk.
"save my_vars.mat
Saves all current variables into file my_vars.mat
-save results.mat resultdata $X Y$
Saves variables resultdata, X and Y in file results.mat
"save ... -ascii
Saves variables in ASCII format
"save ... -mat
Saves variables in binary MAT format

Files I/O

Load Variables
The corresponding command is load.
-load my_vars.mat
Retrieves all variables from the file my_vars.mat
-load results.mat X Y
Retrieves only X and Y from the file results.mat
An ASCII file that contains numbers in a matrix format (columns separated by spaces, rows separated by new lines), can be simply read in by
"A = load('data.txt')

Files I/O

Open, Write, Close Files

- fopen Open or create file for writing/reading
- fclose Close file
- fprintf Write formatted data to file. C/C++ format syntax.

Example:

```
v = randn(1000,1);
fid = fopen('gauss.txt','w');
for i = 1:length(v),
    fprintf(fid,'%7.4f\n',v(i));
    end
    fclose(fid);
```


Files I/O

Attention, Popular Bug

- If your program writes to and reads from files, floating point precision of fprintf is crucial!
- Be sure to always write floating point numbers into files using the appropriate precision.
- In the above example, with ' $\% 7.4 f \backslash n$ ' as the format definition, this file is going to be poor source of Gaussian random numbers.

Files I/O

Reading Files (more advanced stuff)

- textread Read formatted data from text file
- fscanf Read formatted data from text file
- fgetl Read line from file
- fread Read binary data file

Read/write images

- imread

Read image from file (many formats)

- imwrite

Write image to file (many formats)

Contents

Cleaning Up

- clear A Clear variable A
- clear frame* Clear all variables whose names start with frame...
- clear Clear all variables
- clear all Clear everything: variables, globals, functions, links, etc.
- close Close foreground figure window
- close all Close all open figure windows
- clc Clear command window (shell)

Displaying (Pretty) Messages

- disp(A) Display matrix A without printing the matrix name
- disp(str) Display string str without printing the string name
Example: when typing
octave:1> disp('done')
Octave will respond with
done
instead of
ans = done
from sprintf('done') or simply 'done'.

Command History

- Navigate up and down the command history using the up/down arrow keys.
- The command history is start-letter sensitive. Type one or more letters and use the arrow keys to navigate up and down the history of commands that start with the letters you typed.

Tab completion

- Octave/Matlab have tab completion. Type some letters followed by tab to get a list of all commands that start with the letters you typed.

Built-in Unix Commands

- pwd Display current working directory
- ls List directory. See also dir.
- cd Change directory
- mkdir Make new directory
- rmdir Delete directory

Related Commands

- movefile Move file
- copyfile Copy file

Random Seeds

- rand and randn obtain their initial seeds from the system clock.
- To generate identical/repeatable sequences, set the random generator seeds manually.

To set the random seeds:

- rand('seed', value) Set seed to scalar integer value value.
- randn('seed',value) Set seed to scalar integer value value.

Contents

Overview
Start, quit, getting hellp
Variables and data types
Matrix arithmetic
Plotting
Programming
Functions and scripts
Files I/O
Misc
Octave and Matlab in practice
librobotics

Octave/Matlab in Practice

Useful Stuff in Practice

- Generating output from a C/C+ +/Python/Java/... program in Octave syntax
- Making animations
- Calling unix/dos functions from within Octave programs
- Increasing speed

Octave/Matlab in Practice

Output Files in Octave Syntax

- Data written in a matrix format. Example:
filtered_readings.txt

0.792258	0.325823	0.957683	0.647680	0.498282
0.328679	0.414615	0.270472	0.975753	0.043852
0.601800	0.062914	0.837494	0.621332	0.870605
0.940364	0.036513	0.843801	0.806506	0.804710
0.937506	0.872248	0.134889	0.042745	0.228380

- Read in using the command load. Example: A = load('filtered_readings.txt');

Octave/Matlab in Practice

Output Files in Octave Syntax

File contains code snippets. Example:

PlotFilteredReadings.m
$A=[$

	0.792258	0.325823
0.957683	0.647680	0.498282
	0.328679	0.414615
0.270472	0.975753	0.043852
	0.601800	0.062914
0.837494	0.621332	0.870605
	0.940364	0.036513
0.843801	0.806506	0.804710
	l;	
	figure(1); clf; hold on;	
	plot(1:size(A,1),A(: 1));	

Octave/Matlab in Practice

Making Animations

Matlab has commands such as getframe and movie to make animated movies from plots.

Octave, being free of charge, does not (yet) support these commands.

Never mind! Here is a pretty obvious way to make movies:

Octave/Matlab in Practice

Making Animations. Example:

- Let data.txt contain data in matrix format, we want to plot each column and save it as a frame.

A = load('data.txt');
[m n] = size(A);
figure(1);
for $\mathrm{i}=1: \mathrm{n}$,
plot(1:m,A(:,i));
fname = sprintf('frames/frame\%04d.png',i);
print('-dpng','-r100',fname);
end

- Problem: axis limits change for each

Octave/Matlab in Practice

Making Animations. Example:

- To freeze the axes over the entire animation, use the command axis([xmin xmax ymin ymax]) after the plot command.

A = load('data.txt');
[m n] = size(A);
figure(1);
for $i=1: n$,
plot(1:m,A(:,i));
axis([1 m min(min(A)) max(max(A))]);
fname = sprintf('frames/frame\%04d.png',i);
print('-dpng','-r100',fname);
end

Octave/Matlab in Practice

Calling unix/dos Functions

- For Unix/Linux/MacOSX systems, there is the command unix to execute system commands and return the result. Examples:
unix('ls -al')
unix('ftp < ftp_script')
unix('./myprogram')
- For PCs, there is the equivalent command dos
- These commands allow for powerful and handy combinations with other programs or system commands.

Octave/Matlab in Practice

Speed!

- The lack of speed of Octave/Matlab programs is widely recognized to be their biggest drawback.
- Mostly it's your program that is slow, not the built-in functions!
- This brings us to the following guidelines:
- For-loops are evil
- Vectorization is good
- Preallocation is good
- Prefer struct of arrays over arrays of struct

Octave/Matlab in Practice

Speed: Vectorization

- Given phi = linspace(0,2*pi,100000);

The code
for $i=1: l e n g t h(p h i)$, sinphi(i) $=$ sin(phi(i));
end;
is significantly slower than simply
sinphi = sin(phi);

- Nearly all built-in commands are vectorized. Think vectorized!

Octave/Matlab in Practice

Speed: Preallocation

- If a for- or while-loop cannot be avoided, do not grow data structures in the loop, preallocate them if you can. Instead of, e.g.,

```
for i = 1:100,
    A(i,:) = rand(1,50);
end;
```

Write:

$$
A=\text { zeros(100,50); } \% \text { preallocate matrix }
$$

for $i=1: 100$,

$$
A(i,:)=\operatorname{rand}(1,50) ;
$$

end;

Octave/Matlab in Practice

Speed: Structure of Arrays

- Always prefer a struct of arrays over a array of structs. It requires significantly less memory and has a corresponding speed benefit.
- Structure of arrays
data.x = linspace(0,2*pi,100);
data. $y=\sin (d a t a . x)$;
- Array of structure
people(1).name = 'Polly J Harvey'; people(1).age = 32;
people(2).name = 'Monica Lebowski';
people(2).age = 27;

Contents

- Overview
- Start, quit, getting help
- Variables and data types
- Matrix arithmetic
- Plotting
- Programming
- Functions and scripts
- Files I/O
- Misc
- Octave and Matlab in practice
- librobotics

librobotics

- librobotics is a small library with frequently used Octave/Matlab functions in Robotics, especially for visualization.

chi2invtable.m drawrawdata.m j2comp.m
compound.mdrawreference.m jinv.m
diffangle.m
drawarrow.m
drawellipse.m
drawlabel.m
drawrobot.m mahalanobis.m
drawrect.m meanwm.m
drawtransform.m normangle.m
icompound.m
drawprobellipse.mj1comp.m

- Download from SRL Homepage: srl.informatik.uni-freiburg.de/downloads

librobotics

Command drawreference.m

librobotics

Command drawrect.m

librobotics

Command drawarrow.m

librobotics

Command drawlabel.m

librobotics

Command drawprobellipse.m

librobotics

Command drawtransform.m

librobotics

Command drawrobot.m

librobotics

Example Figure

librobotics

- All commands are fully documented, just type help command.
- Note the command chi2invtable.m. It returns values of the cumulative chi square distri-bution, typically used for gating and hypothesis testing. It replaces the chi2inv function from the Matlab statistics toolbox (which is a costly addition to Matlab) while being much faster, too.
- librobotics is compatible with both, Matlab and Octave.
- It's open source, feel free to distribute and extend.

More Information

Full Octave online documentation:
http://www.octave.org
\rightarrow Docs
$\rightarrow 575$ page manual
(directly:
www.gnu.org/software/octave/doc/interpreter)

Full Matlab online documentation:
http://www.mathworks.com
\rightarrow Products \& Services
\rightarrow Product List
\rightarrow MATLAB
\rightarrow Documentation

Thanks and Enjoy!

Kai Arras

Social Robotics Lab

